习题精炼
Part 1
解:
\(\begin{aligned} &m_{1} g-F_{N}=m_{1} a\\ &F_{N}=m_{1}(g-a)\\ &F=m_{1} g>F_{N}\\ &\therefore a^{\prime}>a \end{aligned}\)
答案:B
Part 2
\[\begin{array}{l} \mu_{s} m g=m a \\ a=\mu_{s} g \\ F \leqslant(M+m) \mu_{s} g \end{array}\]解:
答案:C
Part 3
解:
弹簧秤的读数为两根绳拉力的和
\[\begin{aligned} &m_{1} g-F=m_{1} a\\ &F-m_{2} g=m_{2} a\\ &\therefore F=\frac{2 m_{1} m_{2} g}{m_{1}+m_{2}}\\ &F_{S} = 2 F=\frac{4 m_{1} m_{2}}{m_{1}+m_{2}} g \end{aligned}\]答案:D
Part 4
\[\begin{aligned} &m g \sin \theta=F \cos \theta\\ &F=m g \tan \theta\\ &\therefore F_{N}=\frac{m g}{\cos \theta} \end{aligned}\]解:
答案:C
Part 5
\[\begin{aligned} &F_{N}=m g-F \sin \theta\\ &F \cos \theta-\mu F_{N}=m a\\ &a=\frac{F(\mu \sin \theta+\cos \theta)}{m}-u g\\ &即\mu \sin \theta+\cos \theta 有最大值\\ &f(\theta)=\mu \sin \theta+\cos \theta\\ &\frac{d f}{d \theta}=\mu \cos \theta-\sin \theta=0\\ &u=\tan \theta \end{aligned}\]解:
答案:C
Part 6
\[\begin{aligned} &F_{N} \cos \theta=m g\\ &F_{N} \sin \theta=m w^{2} R^{\prime}\\ &R^{\prime}=R \sin \theta\\ &\therefore \theta=\arccos \left(\frac{g}{w^{2} R}\right) \end{aligned}\]解:
答案:B
Part 7
解:
- (1)
- (2)
临界值表示N = 0
\[\begin{array}{l} T \cos \theta=m g \\ T \sin \theta=m w_{c}^{2} L \sin \theta \\ \therefore T=\frac{m g}{\cos \theta} \\ w_{c}=\sqrt{\frac{g}{l \cos \theta}} \end{array}\]